
Reflections on
a Systems Integration Project

 for

Internet Banking

by
Bernard S. Hirsch

Hewlett-Packard Company
930 East Campbell Road

Richardson, Texas 75081 USA
(972) 699-4197

bernie@fssc.hp.com

http://home.sprynet.com/sprynet/bernie06/intbank.htm [External Version]
http://fssc.hp.com/PAPERS/internet_bank.html [HP Internetal Use Only Version]

August 1997

Preliminary Draft 0.95

Abstract. This paper will benefit IS managers, bank business managers, systems
integrators, consultants, and other persons interested in helping their corporations
interact with their customers over the Internet. Instead of theorizing over a
hypothetical scenario with marketspeak, as is commonly done, a real business
project is described. Specifically, a large U.S. retail bank is enabled to start
delivering banking services over the Internet. Both the process and the
technology for creating the bank's new Internet delivery channel is described in
detail. It is shown how balance inquiries, electronic bill payments, transaction
details, funds transfers, automatic reconciliation, and customized reports are all
enabled for various bank products, such as checking accounts and savings
accounts, all based on the bank's business requirements and taking careful
consideration of the bank's technology constraints. Both the physical and logical
architectures for the Internet banking channel are detailed and diagrammed.
These architectures resolve two primary bank requirements: (1) a complete
security architecture that addresses all of the potential securities threats
incumbent with doing business on the Internet, and (2) integration with and
reusability of the bank's transaction processing mainframe systems and
middleware. There is special focus on the integration required with these
backend systems and associated middleware, and on the technology used to
accomplish this integration. The non-technology aspects of this project to create
this on-line banking channel are also described, in particular the various
methodologies, project roles, and lessons learned are outlined. This paper serves
as a compilation of what we learned through our experiences in enabling this
bank to interact with its customers over the Internet.

The corresponding architecture slides for this paper are here.

1 Introduction

Both the structure and the content of retail banking have begun to evolve in recent
years, necessitated by competitive market pressures and facilitated by easing of
government regulations and advances in computing and other technologies. The
traditional "bricks and mortar" branch bank has become too expensive, inefficient, and
restrictive to act, for the industry, as the sole storefront to its customers in the emerging
re-engineered financial services marketplace of the mid to late 1990s. This structure is
slowly being supplemented by banks with newer, more efficient, and more cost-
effective delivery channels, such as the Internet and Worldwide Web. Riegle-Neal has
made it easier for banks to use these new delivery channels to cross state boundaries and
reach new customers digitally. These newer "self-service" delivery channels can help
banks in their quest to deliver any products through any delivery channel at any time of
the day or night, thereby maximizing their potential revenue stream as well as satisfying,
retaining, and perhaps growing their customer base through excellent customer service
and cross-selling of new products with that old-fashioned personal touch, that seems to
have been lost somewhere along the way.

This paper describes a real world project whereby the Hewlett-Packard Company
Professional Services Organization (PSO) helped a large U.S. retail bank build a new
Internet-based delivery channel. Specifically, the first phase of the project, which was
implemented in late 1996 and early 1997, is discussed in detail.1 This new Internet
delivery channel will be used by the bank to deliver products and services to its
customers as well as to cross-sell new products in a secure, personal, "just in time"
manner.

First, the client bank is profiled, and its business objectives are summarized. In the
second section, there is a summary of the methodology that HP used to elicit and
document project principles, specific business requirements, and technology and
infrastructure constraints. This process was not occurring in a vacuum, and as such,
some of the internal corporate dynamics are discussed. Also, in this section, the various
roles that played a part in the project are discussed. Following this, the Internet
banking application functionality is briefly described. In the next section, the physical
and logical architectures for the solution are overviewed and diagrammed. Special
mention is made in two primary areas: (1) it is shown how the architecture for this
Internet banking solution addresses the primary security threats on the Internet, and (2)
it is shown how this architecture integrates with the backend bank transaction
processing systems. Next, the key partners that the HP team collaborated with during
this project are discussed. Finally, the last section summarizes recommendations and
conclusions based on lessons that were learned during this project.

1 At the time of the writing of this paper, the second phase of the project is being implemented.

2 Bank Business Objectives

The client bank, like many banks, has a strong business objective to lower the cost for
each customer transaction. Their branch based transactions are the highest by far,.
followed by the call center, the ATM, and then the voice response unit (VRU). Self-
service transactions over the Internet are estimated to be more than one hundred times
less costly to deliver than branch based transactions that involve bank personnel. One
of the measures that the bank is taking to reduce this overhead is to sell off and/or
consolidate a large percentage of their branches.

Another critical bank objective is the retention of their loyal banking customers across
the country. Addressing customer retention has several factors -- beating the
competition, avoiding disintermediation, and providing superb customer satisfaction.
There is the threat of competition from both regional and national banks. A regional
banking competitor, for example, had already introduced their Internet banking package
earlier in 1996, and our client bank had an urgent desire to also get to market as quickly
as possible. On the not so distant horizon, there is also the threat of disintermediation
by other financial services companies as well as by non-traditional competitors, like
software publishers. If the bank were to be disintermediated, it would lose the customer
relationship -- the very thing that it cherishes most. And to control the relationship with
the customer, the bank has to control the delivery channel.

Probably the most important factor to retaining customers is delivering satisfaction
through convenience and value. As one example of convenience, our client's customers
were literally begging the bank for Internet banking. They were sending electronic mail
over the bank's web site asking when they would be able to start banking from home
over their personal computer. They were asking this due to the convenience of when,
where, and how they perform their banking. They were also asking this due to the
control that a self-service banking channel provides to the bank customer. Being able to
perform electronic bill payments and fund transfers when one absolutely needs to, for
example, gives a customer an enormous feeling of control and satisfaction -- which is
essential for customer retention.

The other part of the customer satisfaction equation is providing value by delivering
meaningful services to customers, and delivering these in a personal manner. Here,
delivering meaningful services implies more than simply showing product rates or
webifying checking and savings products transactions -- functions that are already
available through other delivery channels. Rather, it means creating new services that
are most appropriately delivered through the new channel and that extend the bank's
existing products and services and that have meaning to the bank's customers. In
addition to the electronic billpay service, which is also available on the bank's VRU, the
bank wants to provide a brokerage service, where equities can be researched and bought
and sold. One of the risks, however, of using an automated delivery channel to provide
these new services is the potential for relatively little or impersonal interaction.
Therefore, the bank has an object for providing a personal customer experience as the
backdrop for this delivery channel. This implies providing as part of the overall
customer experience, individualized web pages, individualized cross-sell marketing

messages, opportunities to interact with the bank's customer service representatives --
and potentially other bank customers, and in the future, individualized products. The
cross-selling marketing messages are an area that need to be handled sensitively, so as
not to alienate customers with obtrusive sales pitches. Rather, the bank would like to
deliver these in a personal, value-added manner by having the messages triggered by
personal life events. For example, a child turning eighteen could trigger a marketing
message offering a special college loan or checking account. In this way, instead of
being perceived as an unsolicited intrusion, the messages would hopefully be perceived
as extensions of an already personal relationship between the bank and the customer.

3 Project Startup Methodology

3.1 Internet Banking Principles

Part of HP�s methodology in the beginning of the project to gain momentum was an
executive workshop, whereby in a three hour period, key executive stakeholders were
organized so that project principles, themes, and requirements are elicited. First,
everyone agreed to a short list of project principles that were so unifying and global that
they guided the development of the remainder of the business requirements. The
project principles that were gathered during this workshop are:

1. Strong bank branding.
2. Unique Value to customers.
3. Customer centric -- reflecting the customer relationship.
4. Must be easy to use and intuitive to the customer.
5. Finally, and most important, it must be secure!

Next, the workshop facilitator encouraged all stakeholders to brainstorm on the various
business requirements for the project. The facilitator then worked with the participants
to gain consensus on which of these were absolutely essential for the various phases of
the project, and which of these would be "value-added" functionality. The project team
also provided its input, based on its knowledge and understanding of the Internet and
related technologies and where and how they are evolving and maturing. Coming out of
this workshop, then, was a set of unifying project principles and a list of prioritized
requirements to which everyone agreed -- the bank business personnel, the bank
technology personnel, and the project team2.

The next step with which HP proposed to work with the bank was a rapid application
prototyping workshop, whereby HP would work with the bank's retail business unit
stakeholders to understand the exact functionality, branding, and user experience
requirements for the Internet banking project. Here, for each unit of functionality that
the bank required, HP would rapidly develop3 and gain consensus with the stakeholders

2 It is important to note here that the project team was composed of both Hewlett-
Packard consultants as well as bank employees. The exact composition of this project
team and their roles are detailed later in the next section of this paper.
�3 HP uses an HP rapid application development (RAD) methodology for implementing
Internet banking projects. This RAD process differs from traditional software
development projects in that it is timeboxed and iterative in nature. Each development
cycle is limited to approximately one calendar quarter. In this unique manner, new
features and functionality for our clients� Internet bank can be introduced on a regular
and frequent basis -- in web time.

on the corresponding look and feel for the user interface as well as its navigation. Of
importance here to the bank is the bank branding as well as the customer experience.
Due to the timeline on which the bank was proceeding on this project, it opted instead,
in this first phase4, to do a full Internet banking proof of concept.

3.2 Project Requirements and Constraints

Some of the functionality requirements that were gathered during the workshop are:

1. Checking and Savings Account products to be supported.
2. Electronic Bill Payments.
3. Customer Defined Accounting and Transactions.
4. Real-time Account Balances.
5. Funds Transfer between Customer Accounts.
6. Some value-added functionality for differentiation from the competition.

It was also determined that the second phase of this project would support the following
requirements:

1. Customer enrollment (e.g., Account Openings).
2. Credit card product supported.
3. Integration with customer service department.

These project principles and functionality requirements had to then be mapped to the
real world by taking into consideration the existing technology infrastructure of the
bank. This infrastructure includes:

• the various bank mainframes,
• the banking applications and their corresponding databases that support the various

bank products,
• the transaction processing operational software,
• the transaction programs written by the bank to support a multitude of banking

functions,
• middleware purchased and customized by a third party for billpay through the

VRU,
• the existing billpay provider,
• the SNA gateway,
• the customer data warehouse,
• the Internet architecture designed by the bank,
• the various security mechanisms in place,
• and the various business rules employed by the bank applications.

The process that the project team used to uncover all of this information were detailed
interview sessions with the bank information systems (IS) technology stakeholders. In

4 In the second phase, HP did conduct this rapid prototyping workshop with the bank.
�5 The current version of the VBM software now does support real-time processing.

particular, several key technology infrastructure workshops were scheduled on the
following subject areas to elicit technology requirements and constraints:

• Security
• Internet Infrastructure
• Legacy Data Integration
• Application Architecture

As a result of this process, the following technology requirements and constraints were
identified:

1. The Internet banking project needed to reuse the existing mainframe infrastructure.
2. The project needed to reuse the existing home banking middleware.
3. The project needed to use the same billpay provider as the telephone banking

system.
4. The bank had very little Internet background.
5. The bank had very little bandwidth to assist HP.
6. Real-time data access to mainframe legacy data was mandatory. (This required

modification to the shrink-wrapped web application, that would be used.)
7. The bank had certain preferences for how legacy data was to be retrieved, however,

much of this mechanism had never been tested or integrated.

3.3 Alternatives, Gaps, and Solution

The project business and technology requirements that we gathered, along with the
overall project principles that guided the project, lead to several possible solution
alternatives for our client bank. Two of these were based on third party application
software, and one was a custom software development option. Each solution that was
considered had certain gaps that needed to be filled to meet the requirements. Based on
the direction that we received from our client, we decided to implement an Internet
banking solution based on the Virtual Bank Manager (VBM) Internet banking
application software from Security First Technologies (S-1). One of the gaps for the
solution that was selected was the fact that the version of the software that we were
using did not, at the time, support real-time processing,5 which was one of our client�s
business requirements.

3.4 Other Dynamics

The backdrop for this Internet banking project was the healthy skepticism by several
bank executives about the security of conducting retail banking on the public Internet.
Another project, one focused on delivering PC home banking services, was using a
private network linked to the bank to accommodate its dial-up customers, an
infrastructure which was perceived as more secure than the Internet. Hewlett-Packard
devoted much effort to work with these executives on their skepticism. HP put together
presentations, educational seminars, and solution partner meetings to describe in detail
the exact nature of the various security threats over the Internet and how they could be
alleviated. It was show how with various technology solutions and security
architectures these security threats could be addressed. We had previously proposed an

in-depth security assessment and security architecture engagement to the bank, however
due to the timeline on which our client was proceeding, they opted instead to use HP as
the primary integrator for aa full Internet banking proof of concept.
Also, the accelerating popularity of the Internet had caused our client to rethink some of
their original requirements -- specifically to rethink the model of a proprietary dialup
network providing only a single home banking service to a standards-based dialtone
providing a agglomeration of services6.

3.5 Project Team Roles

There were many important roles that played a part throughout the project. Some of
these roles, such as project manager and lead architect, were necessary for the duration
of the project. Other roles, such as transaction processing expert and technical writer,
were only required for a part of the project. These roles are summarized below.

• Project Sponsor
• Business Project Managers
• Lead Architect
• Business Liaison
• Meeting/Personnel/Logistics Manager
• Technical Project Manager
• Application Expert
• Process Methodology Expert
• Facilitator
• Mainframe Infrastructure Expert
• Legacy Data Expert
• Infrastructure Architect
• Security Architect
• Transaction Processing Expert
• Programmers
• System Administrator
• Technical Writer
• Account Manager

In some areas, a single role was filled by multiple persons, while in other areas multiple
roles were filled by a single person. HP PSO project personnel were used to assume
most of these roles while our client's project personnel assumed the roles of Project
Sponsor, Business Liaison, Legacy Data Expert, and Meeting/Personnel/Logistics
Manager.

6 Other advantages of the Internet web browser approach include (1) no investment in client
software, (2) no software distribution, (3) ability to be innovative without changing current
technology or sending out new releases, (4) providing central management of the direct banking
application, and (5) providing a direct relationship with the customer.

4 Application Functionality Overview

Virtual Bank Manager (VBM) is the foundation for Security First Technologies'
Internet banking application software. It supplies standard bank offerings such as
account openings, demand deposit accounts, electronic bill payment capability, and
check ordering. Credit cards, brokerage, and insurance products are also available as
options.

With VBM, customers have round-the-clock access to their accounts via the bank's
"home page," their lobby on the World Wide Web. The customer interface is intuitive,
mouse-driven, and user-friendly, giving customers:

• Customer sign-on and authentication
• On-line account statements, balance inquiry, reports, and register views
• Automatic statement reconciliation
• Transaction categorization
• Funds transfer between accounts
• Electronic bill payment capabilities
• Account transfers
• Tutorial and On-line Help for new customers
• Information server with product demo for potential customers
• Direct e-mail link to the bank's customer service department
• .QIF Export format (Quicken/MS Money)

Virtual Bank Manager supports checking, money market accounts, joint accounts, bill
payment, CDs, ATM/Debit cards, credit cards, check imaging, and traditional paper
checks. Customers who access VBM on-line can review account activity, enter
transactions into an on-line account register, pay bills electronically, and print reports to
indicate income and spending trends.

With VBM, new customers may apply to open an account with the bank over the
Internet by completing an account application. The customer is required to submit the
application on-line, print the application form along with all necessary and applicable
disclosure statements, sign the application form and the disclosure statements, and mail
the documents to the bank, along with funds for the customer's initial deposit.

Bank customers can view an electronic account register that is similar to a traditional
checkbook register. Each time a customer writes a check or enters a deposit, the
customer may enter the transaction into an electronic register if they wish to have a
completely up-to-the-minute bank balance. The account register displays both cleared
and uncleared transactions. When those transactions clear, VBM matches them with the
register entries. If there is a difference, VBM notifies the customer about the
discrepancy. If the customer prefers not to manually enter transactions, they can wait
until the cleared transactions are posted to their register. Both the account statement
and the account register provide for payee/payer and category fields so customers can
itemize income and expense categories.

After a customer's items have cleared, the item appears in both a customer's account
register and the customer's account statement. The on-line account statement is an
electronic version of the statement a customer would receive in the mail from a
traditional bank. Unlike a traditional monthly statement, this electronic can be accessed
any time at the customer�s convenience. The customer can adjust the dates of the
statement and go back as far as eighteen months.

Customers are able to send electronic payments to any payee. They can also select to
have bills paid at a predetermined frequency (i.e. monthly, quarterly) without additional
input. Customers can stop payment on any electronic bill payment or automatic
payment by deleting the payment from a pending payment list or by unselecting an
automatic payment for a specific payee.

Electronic bill payments that are initiated with VBM are subject to customer-defined
limits and bank-defined limits. These limits protect the exposure that a customer has to
any fraudulent activity. They are also incorporated into log files to automatically detect
potentially fraudulent activity.

At the time of application, a customer is asked to set customer-defined limits on their
accounts for electronically initiated bill payments. These limits can be set on a
transaction basis and on an account basis. A transaction-based limit would limit the
dollar amount of any single payment. An account-based limit would limit the total
amount of payments that could be made in any one day. These limits and actions can be
changed periodically by the customer.

Bank-defined limits are limits maintained by VBM and affect all accounts, overriding
customer-defined limits. There are three types of bank-defined limits: transaction-
based, account-based, and payee-based. Transaction-based limits and account-based
limits are the same as those defined in the customer-defined limits section. Payee-based
limits are limits on payments to any one payee across all accounts.

5 Solution Architectures

The solution that the HP project team implemented, that met the stated functionality
requirements and technology constraints, is composed of data processing scenarios, and
a variety of hardware and software components. These span the path from the bank
customer web browser running on a PC over the public Internet to the bank servers and
legacy mainframe systems. Several views of the solution are described below, starting
with the processing flows and their modes of operation. Following this, the physical
architecture highlights the hardware systems and high level networking protocols that
are used. The logical architecture is shown in the next section, and it focuses on the
software components and also the more detailed protocols and application programming
interfaces (APIs). Finally, the security architecture is discussed, paying particular
attention to how various security threats are addressed.

5.1 Data Processing Flows

VBM consists of a series of graphical web pages with which the customer interacts and
a software program that executes customer requests. When customers wish to view
their account balances or perform transactions, VBM communicates with an Informix
relational database which stores account information for each customer and batches up
transactions that need to be communicated with the bank's demand deposit account
(DDA) software at the end of the day (or however often the bank wishes this to take
place.)

There are six (6) sets of processing flows that will need to occur in order to support
Internet banking to our client�s customers with the VBM software. These flows are
introduced below.

1. Initial Customer, Account, and Relations Setup Processing

This processing loads existing and new customers and their accounts into the VBM
database. It also relates customers to their accounts.

2. Initial Bill Payee Setup Processing

This processing loads merchant information and recurring payments for each existing
customer from the bill payment system into the VBM database.

3. Account Detail (e.g., debits, credits, reversals)

This daily processing loads daily customer transaction activity (e.g., all debits, credits,
and reversals) from the client�s DDA into VBM, thus providing account detail
information for each customer.

4. Billpay Processing

This daily processing verifies that a customer's pending electronic bill payment for that
date has sufficient funds in order to be processed. If so, that debit is memo-posted to
the customer's account, and the master billpay account for that bank is memo-posted
with the credit. Also, the electronic billpay is appended to a batch file which is
transmitted to the mainframe for later processing by the bill payment vendor. Also, new
billpay merchant information (e.g., merchant adds and merchant edits) from VBM are
transmitted to the bill payment system on the mainframe.

5. Funds Transfer Processing

This processing transfers funds from one customer account into another account for that
same customer, by loading funds transfer requests from VBM into the mainframe DDA,
using memo-posted debits and credits. As in billpay processing, a sufficient funds
verification is first performed. An email is automatically sent to the customer
documenting the success or failure of the operation.

6. Account Balance Processing

This processing occurs when the customer logs into VBM so that the latest customer
account balances are displayed. For each customer account, the mainframe is queried
for any memo-posted debits and/or credits and the resulting customer balance is
displayed in their web browser.

Each processing flow requires some data exchange between the mainframe system and
VBM. The data exchange can occur in three different modes outlined below.

a) Batch: automated off-line processing in which common data files are exchanged.
b) Near-time: automated on-line processing in which messages are exchanged.
c) Real-time: automated on-line processing in which messages are exchanged,

triggered by a customer event (e.g., customer login).

Batch Mode:

In batch mode, each processing flow spans execution across the client�s mainframes and
the VBM server. In general, each will have the following steps associated with it:

A. Extract data from source database into common data file.
B. Optionally, transfer this file to the destination host.)
C. Load/Update data from this file into the destination database.

As such, each batch processing flow that spans execution from our client�s mainframes
and the VBM server is composed of at least two (2) associated batch job steps. Some
processing flows, such as billpay, will require additional batch job steps due to round-
trip processing.

When loading/updating and extracting data between the VBM database and the
common data file, embedded SQL is used. When loading and extracting data between
the mainframe and the common data file, out client�s existing middleware is used.

Batch mode processing is typically used for daily account detail and billpay processing,
as well as initial customer, account, and billpay setup processing.

Near-time Mode:

Near-time Mode is an improvement on batch processing, in that instead of exchanging
data via common data files, messages are exchanged in near real time (thus the name).
This mode is used to improve the processing flows that are time critical, such as
electronic funds transfer. In this way, instead of waiting a potentially considerable
amount of time for a response via a batch file, and thus for a processing flow to
complete, a message exchange occurs in near real time. This message exchange is
initiated using frequent scheduled processing times (e.g., every five minutes). In the
example of funds transfer, then, a funds transfer request is memo-posted within five
minutes of the request, thus allowing a later ATM withdrawal by the customer to
succeed.

Real-time Mode:

The major difference between near-time and real-time modes, is that near-time
processing is not triggered by a customer action. Real-time processing mode is
triggered by a customer action. In this mode, data exchange occurs in the most timely
fashion. The real-time processing mode is used to display actual customer account
balances from our client�s mainframe, when the customer logs into their account. ATM
withdrawals, for example, that could have been recently memo-posted would be
accounted for in this real-time account balance.

Our Implementation:

These various processing modes complement each other in the implementation for our
client. The current VBM software, at the time of our implementation, did not support
real-time processing. Until this time, batch and near-time processing are used for most
of the processing flows, above. The HP team decided that, in order to be successful on
this project, we needed to customize the S-1 VBM software to be able to meet our
client�s business requirement for real time access to account balances.

In our implementation, regardless of the data processing flow used, our client�s existing
CICS transaction programs and a new HP object layer will always be used. For
example, instead of writing directly to the VBM batch file layouts in a batch processing
scenario that will be migrated to real-time in a later phase of the project, we decided to
create a middle layer of objects that model our client�s banking transactions and that
encapsulate all of this data access. In this way, we are not coding directly to the
particular data processing mode, and as such there will be very little throwaway code.
Specifically, when the newer VBM release supports real-time processing, this middle
layer of banking transaction calls and logic are simply moved from the batch adapter to
the real-time adapter and the file I/O is simply removed.

It was also suggested by the HP team, that even when real-time processing is supported,
it will not be used exclusively in all processing modes. Rather it will be used in tandem
with batch and near-time processing. Specifically, some of the processing lends itself
naturally to batch processing (i.e., initial customer/account/billpay setup and daily
customer transaction detail processing). And batch mode processing can occur in an
off-line batch mode at uncongested customer traffic times to increase the overall
performance of our client�s Internet bank. For example, instead of downloading all of
the DDA transactions since the last customer signon -- which could be quite large -- in
real-time when that customer next signs on, it will be better from a performance
perspective to download only the incremental DDA transactions since the last daily
batch download.

For this phase of the project, we decided that batch processing is used for account detail
and initial customer load. Near-time processing is used for funds transfer and billpay.
Finally, real-time processing is used for querying customer account balances, in the new
VBM real-time interface that we developed for our client.

5.2 Physical Architecture

There are several components in place that comprise the physical infrastructure for this
solution. The high level protocols are in red, the physical hardware components
installed at the bank are in blue. The infrastructure in place outside of the bank, that is
used in the solution is in black.

Web Browser
This is the bank customer's PC, at either home or work, running a web browser, such as
Netscape Navigator or Microsoft Internet Explorer. The only required software
component for the bank customer is off the shelf software -- quite a contrast to the
proprietary home banking model, where a custom developed piece of client software is
required. This is important to the bank, because no longer does the bank have to be in
the software distribution business, which is not really its core competency.

Internet
The only other component required for the customer is to have access to the Internet via
an Internet Service Provider. From the bank's point of view, a connection or set of
connections to the Internet is also required so that it may provide services to its
customers. However, when compared to some proprietary dialup home banking
solutions, the bank does not have to be in the business of managing large banks of
modems and telephone lines -- again, not really its core competency.

Filtering Router
The filtering router is responsible for connecting the bank to the Internet, as well as for
providing an initial layer of security.

Mail Server

The Mail Server is a server computer that acts as the conduit which routes electronic
mail between the customer and the bank's customer service representatives (CSRs). For
example, the customer may have questions or problems that are most conveniently
communicated through email. Also, email is sent to customers by CSRs when problems
are resolved, and by bank business managers as a conduit for marketing information.
Finally, when important events (e.g., transfer of funds successful) are registered by the
Internet bank application, email is also sent. This is an HP Unix server computer,
which runs both a mail server, a firewall package, as well as the Domain Name Service
(DNS).

Web Content Server
This web server is the repository for all web data, other than those provided through
interaction with the Internet banking application. For example, the bank's home page
and marketing information are stored on this server, as well as any other static HTML,
graphics, etc. This is an HP Unix server computer running Netscape Enterprise Server.

Virtual Vault
The Virtual Vault is an HP server computer that acts as the single point through which
all secure Internet banking transactions occur. As such, it acts as a firewall that also
provides the necessary security to prevent and audit known and unknown security
threats. Since all of the information and monetary assets that the bank owns are now
attached to the public Internet composed of tens of millions of computers, the Virtual
Vault is responsible for protecting the bank's exposure. In particular, it protects all of
the Internet banking applications and data against security threats by either external or
internal hackers.

Application Server
The server portion of the Internet banking application runs on this HP-UX based
application server, along with the data repository for the Internet banking information.
The application is Security First Technologies' (S-1) Virtual Bank Manager (VBM).
The data repository is an Informix relational database. The types of information held in
various Informix tables include the following:

• Customer information
• Customer Payees
• Transactions
• Transaction types
• Customer Accounts
• Categories
• Pending payments

It is important to note that this information supplements the information already
maintained on the mainframe transactional systems. For example, transaction categories
and Internet-specific information are store on this application server. This application
server also acts as a data warehouse, providing in some cases more historical data (e.g.,
sixteen months of customer transaction information, for example, for tax reporting
purposes) than the mainframe provides.

SNA Gateway
The SNA gateway is an IBM computer running the AIX Unix operating system. It is a
protocol converter routing TCP/IP application requests into SNA CICS transactions.

Transactional Systems

The transactional systems are those systems upon which the core banking applications
reside. These are a private nationwide network of IBM mainframes running the MVS
operating system and CICS transaction processing monitor. The primary mainframe
applications that are used are the Hogan Systems Demand Deposit Account (DDA), the
Braun-Simmons Interpose billpay system, as well as internally developed CICS
middleware using various VSAM files as information repositories, mostly written in
COBOL.

Billpay Provider

The billpay provider is a third party company that is responsible for providing the
electronic billpay service. Customers request to make payments to their merchants with
whom they do business, and the billpay provider acts as the conduit payment provider.
When a billpay request is made, the customer uniquely identifies the party to be paid
with an address, account number, etc. Funds are then transferred from the customer's
account to the billpay provider's account. Payment is then made, preferably
electronically, and if this is not available, then a paper check is cut on behalf of the
customer. Customers control when the payment is to be made, and thus when it is
debited from their account. Also, either recurring or one-time payments can be
requested. Physically, a dedicated and secure private connection is required between
the billpay provider and the bank's transactional systems, so that the electronic bill
payment data can be transferred. As stated previously, the relationship with this third
party and the physical connection was already in place to serve the VRU channel.

Data Warehouse

The data warehouse is a repository of historical information on the bank's customers as
well as information on the bank products. It resides on an IBM mini-mainframe running
the MVS operating system, with the data residing in a DB2 relational database.
Personal life event information is extracted from this data warehouse and presented to
the customer in the web application, so that products can be marketed in a personal,
relationship-oriented, non-intrusive manner.

5.3 Logical Architecture

The software component, protocols, and APIs that comprise the logical architecture of
the Internet banking solution are discussed below.

HTTP
HyperText Transfer Protocol (HTTP) is the Internet protocol that is used to send data
between the bank customer's web browser and the bank web server. HTTP, by itself, is
a non-secure protocol, and must be used in conjunction with other mechanisms to
establish security. HTTP, therefore, is used for transferring non-secure marketing
information between the customer web browser and the web content server (see above).

SSL
Without adequate security measures, both the bank and its customers have to worry
about electronic fraud. This includes data tampering, eavesdropping, and forgery.
Secure Sockets Layer (SSL) is the component in this architecture that prevents these
types of fraud by securing web sessions between the bank and the customer. Public key
certificates are used to encrypt important customer data and to authenticate the bank and
optionally the customer. SSL allows sensitive information (e.g., account information,
passwords) to be shared between browser and server, yet remain inaccessible to third
parties. It also ensures that data exchanged between browser and server cannot be
corrupted -- accidentally or deliberately -- without detection. In particular, SSL secures
information between the customer web browser and the Virtual Vault. SSL also allow
the web browser and web server to authenticate one another by exchanging public key
certificates.

VBM CGIs
Common Gateway Interfaces (CGIs) are the application programs that run on the web
server -- in this solution, the Virtual Vault -- to implement some functionality. VBM
CGIs are the client side of the S-1 Internet banking application software, that make E-
SQL calls on behalf of some customer request over the web.

E-SQL, VBM DB Programs, and Informix Database
E-SQL is Informix's embedded SQL technology that is used by the VBM CGIs to query
and update customer, account, and billpay data in the Informix database from across a
network. In particular, the VBM client side CGIs on the Virtual Vault invoke some
customer requested application functionality by connecting with the server side VBM
database programs on the Application Server using Informix communication libraries.
The VBM database programs make embedded SQL calls to the Informix relational
database to query and modify the necessary data.

VBM Adapters and Batch Files
The VBM data adapters are another component of the S-1 VBM application software.
They supply off the shelf functionality whereby customer, account, and electronic
billpay data can be both retrieved from and updated into the VBM Informix database,
without having to know the schema of this database and without having to write any
SQL. Some of the data flows that have corresponding VBM adapters include:

 Customer and Account Maintenance Information
 Add Account Detail
 Get Transfer Funds Requests
 Get Billpay Requests

These adapters are processed on the Application Server and will either extract from or
load into the VBM Informix database using human readable text files that are processed
by the legacy data backend adapters (see below).

Backend Adapters
The backend adapters are software developed by Hewlett-Packard for our client that
interface with both the VBM Informix database and the bank's back end systems. The
adapters are scheduled to run in either batch or near-time, as directed by bank
operations personnel. There are backend adapters for the following data flows:

 Customer and Account Maintenance
 Account Detail
 Funds Transfers
 Electronic Billpay

Typically, the customer and account maintenance, account detail, and billpays are
scheduled to run as nightly batch jobs, and the funds transfers are executed in near-time,
meaning in almost real time in response to a customer request. When they do execute,
they read from and update bank mainframe data directly in real-time using a
synchronous messaging interface described below. The adapters are abstracted from
having to know any detail about this mainframe by encapsulating all legacy data access
with layers of software called Client Bank API and Datamap Library (also described
below).

Real-time Adapters and BSD Sockets

The components described above comprise one series of data flows between the
customer web browser and the bank mainframe systems. However, our client had a
technical requirement to do real-time access to their backend legacy systems.
Specifically, their requirement was to access latest customer account balances, including
any ATM or other activity that may have been performed that very day. The Internet
banking application did not yet support this real-time functionality, so the HP team
worked with our client and S-1 Technologies, and modified the VBM source code to
include this real-time account balance functionality. Specifically, we modified the C++
source code for the Account Balance CGI so that instead of accessing the Informix
database for account balances, the CGI made a networking connection (using a
Berkeley sockets mechanism) to middleware that would then access the real-time
account balances (see below for more detail).

Client Bank API, Data Access Library, ECI

Rather than have the application CGI connect to the bank mainframe directly, the
project team made the architectural decision to access the real-time account balances
using a piece of middleware that was developed for this project. Reasons for this
include:

• Scalability
• Reusability
• Portability

Specifically, an architecture that provided two-tier access to legacy data would not be
the optimal solution for simultaneous access by a subset of the bank's customers. A
three-tier model provides a better model by offloading the data access requests to a
second tier. Secondly, if the data access and business logic was coded directly into the
CGI, then any change to the logic would require changes to the CGI programs.
Eventually, these CGIs would become part of the baseline VBM application, so we
opted to embed the logic in the second tier. Finally, this data access layer could be used
by other projects ongoing in the bank that needed a way to get to this mainframe
customer account data from an application not residing on a mainframe.

The solution that we designed is a data access library that is designed in an object-
oriented manner. It has several components:

• A client bank business API
• A function aggregation and data mapping component
• A component responsible for implementing and abstracting the legacy data access

mechanism -- in this case IBM's External Call Interface (ECI).

The client bank business API is the interface that is used by any other application or
object that needs to use these data access services. It abstracts all of the implementation
details into a very simple and intuitive set of calls, such as:

� Get Balance
� Verify Funds
� Transfer Funds

These are the set of transactions that a customer needs in order to do business with the
bank. Amazingly enough, these transactions, while they did exist, were not
implemented using an easily accessible, documented, and clean interface. Further, there
were a set of other supporting transactions that were required, before the primary
banking transaction was invoked.

Thus, our data access object performed function aggregation so that only one
transaction was required. It also implemented the necessary data mapping that was
necessary for marshaling the transactions input and output parameters to and from the
communications area (COMMAREA) and between each supporting transaction call.

Finally, due to two of the customer's requirement, we used the IBM ECI interface to
access the customer account data hosted on the bank's mainframes in various VSAM
files. Remember, that these requirements were to reuse existing mainframe
infrastructure and that they had preferences to use ECI, even though it had not been
fully tested when used in this manner.
ECI allows software programs that are not CICS based to implement existing CICS
transactions without any modification to those transaction. This reuse of their CICS
software was extremely important to our client and this is ultimately why we went with
this mechanism, which turned out to be a very nice way to access this legacy data. ECI,
which is implemented on top of Distributed Computing Environment (DCE) remote

procedure calls (RPCs),. uses a simple send/receive metaphor for data access through a
communications area.

Finally, note in the application architecture diagram above, that this data access library
is used by both the real-time and the batch adapters. In this way, all data access
throughout the system is isolated to one software object.

5.4 Security Architecture

The various security threats that exist on the public Internet needed to be accounted for
in the solution architecture for our client�s Internet bank. Some of these threats are:

1) Fraudulence

• User spoofing
• IP spoofing
• DNS spoofing

2) Eavesdropping / Disclosure
3) Transaction Integrity

• Modification
• Insertion

4) Attacking bank infrastructure
• Attacking web server and firewall
• Attacking web application
• Collusion of insider with outside attacker

5) Trojan horses
6) Taking over bank services

• Denial of service
• Re-directing services

7) Inadvertant threats
• Web server instability
• Application instability
• Incorrect software configuration by Operations
• Web server security problems

These threats can be viewed as four general categories of security attacks:

I. Unauthorized access to network transactions
II. Unauthorized access by outsiders to server data
III. Unauthorized access by insiders to server data
IV. Attacking client and server application integrity

The security architecture that is show below solves every one of these attacks -- except
for attacking client PC application integrity, which is out of the control of the bank.

The filtering router is programmed with rules that determine what gets through.
Typically, only HTTP, SSL, and SMTP are allowed only over well-known ports. Also,
source route attacks and inside IP address spoofs are stopped here, as well as attempts
to reprogram the router.

The Secure Socket Layer (SSL) technology inherent in today�s web browsers and web
servers encrypts banking transactions so that confidential information like account
numbers and account balances all remain private to the customer. Further, SSL checks
for integrity of the banking transactions, so that no modification is possible. Finally, the
banking server is authenticated so that the chance of a renegade fraudulent server
pretending to be the real bank server is not possible.7

Virtual Vault is the one of the most important components in the security architecture
that prohibits both insiders and outsiders from gaining access to our client�s monetary
assets.

7 Client-side authentication and support of smart cards is also possible with SSL,
possible in a future phase of the project.

A commercialization of U.S. government-deployed (B1) trusted operating system
software, Virtual Vault acts as a military strength firewall. It provides much greater
security, however, than standard operating systems through employment of least
privilege and information separation mechanisms. Least privilege addressees super-
user weakness by substituting a privilege check for each super-user check in the
operating system. Applications like web servers, then, are only granted the specific
privileges needed for the task at hand, while eliminating super-user from the system.

Information separation allows for information assets to be kept inside inaccessible
compartments while the web server and site presentation is relegated to an outside
compartment. Specifically, the web server runs in the �outside compartment�; it is here
that the HTML is displayed and user input is collected. The VBM Internet banking
application runs on the protected "inside compartment" of the Virtual Vault as a
collection of Common Gateway Interface (CGI) applications, while the HTML. Before
each CGI is run,a check is made to see if it is a valid software program that is part of the
Internet banking application. Further, the checksum for each CGI is checked to make
sure that it has not been modified or replaced.

Together, these security features prevent tampering and, hence, provide the extra
assurance that hackers will not be able to compromise the bank. Because of Virtual
Vault�s security features, even inadvertant threats -- such as software bugs in the web
server or the Internet banking application, or even incorrect software configuration by
Operations personnel -- are thwarted. This allows much greater confidence by our
client in the security of their Internet bank.

Computerized audit files also create a record of every electronic banking transaction
that occurs within VBM. Such log files are used to detect suspicious activities and are
used as audit trails to detect and prevent fraudulent transactions. Log files include
information such as the customer's name, Internet address, account number, the time and
date of each transaction, the payee and the transaction amount. Specifically, the log
files and the audit trails they document are designed to detect types of fraudulent
activities such as (a) access to multiple accounts from a single network location; (b)

unusually high volume of transactions against an account; (c) unusually high values of
transactions; and (d) unusually high amount of bill payments to one payee.

Virtual Vault also provides an authorization mechanism that splits administrative tasks
among administrators that have different privileges for different aspects of system
administration (e.g., backup, web site configuration). This helps eliminate the
possibility of attacks that are facilitated by collusion of an insider, one of the most
prominent types of security crimes.

A final level of security exists within the Internet banking application. Here, VBM
provides authorization payment limits at both the bank and customer level. When a
payee-based limit is exceeded, the VBM�s internal audit system generates an alert to a
designated individual or group of individuals. The alert details the payee, the limit and
the current amount scheduled to be paid, for use by the bank to perform further
investigation. If no suspicious activity is detected, the payments are transmitted as
normal to the bill payment service. This provides a mechanism whereby the bank can
monitor and detect electronic payment activity that is outside of the norm of what is
actually performed by the customer. This would be only possible if an intruder
somehow stole a customer�s password -- potentially by a client side trojan horse, for
example. This is something out of the control of the bank�s security architecture, but it
is monitored for and detected by the application

6 Project Partners

Several organizations collaborated with Hewlett-Packard as project partners to bring
everyone's collective expertise together to deliver a successful Internet banking project.
From a customer relationship perspective, HP was the primary systems integrator and
most of the project partners acted as sub-contractors to HP on the engagement. Each of
the partners contributed their value-added expertise as necessary, and as outlined below.

• HP Financial Services Professional Services Organization (PSO)
• Security First Technologies (formerly Five Paces Software)
• Bluestone
• HP ISSL
• Alltel
• Vantage One
• Client IS Personnel

7 Recommendations and Conclusions

Based on this Internet banking experience, several recommendations are given on areas
of best practice as well as precautions on areas of project risk. Some of these are
recommendations that are general in nature, while others are specific to certain types of
implementations. Further, some of these are technology related, while others are people
and process related.

1. Legacy data access is the most complex task for Internet banking integration
projects. It is recommended to choose the mechanism, and design the architecture as
soon as possible. This requires a good methodology and customer participation. In our
project, we could have compressed the technology interviews.

2. IBM ECI is a nice way to access legacy data without modifying CICS transaction
programs. This promotes reusability of customer CICS code. When it is available, it is
suggested to use CICS 2.0 with the DCE-lite (e.g., RPC only) option for less
configuration complexities. IBM seems to be committed to this API, and has web-
enabled it. Our client is also very committed to this API.

3. It is important that adequate time is spent with the final release of the Internet
banking application software for testing and operational support reasons.

4. It is crucial to fully document Test Plans that are used by the project teams to unit
test, regression test, and integration test the Internet banking system.

5. It is equally if not more important to fully document an Operational Support Plan
that provides detailed information on managing the Internet bank:

• how the system operates,
• the flow of data through the system,
• data processing flows, schedules, and procedures
• security procedures,
• system logs and error logs,
• and any areas for human intervention.

Further, bank personnel need to be identified to perform these functions, as well as how
they will interact and communicate with the rest of the project team. It is important in
this Operational Support Plan to document the cross-organizational communication and
processes that are required. For example, when an error is reported with the system, a
process needs to be initiated by the Help Desk personnel that could potentially involve
Operations and System Development personnel to help locate and solve the problem.

6. It is recommended to not implement many new projects and types of integration,
simultaneously. The bank assumes much greater risk for the success of the Internet
bank project completing on time and on budget, since it is dependent on the success of
each of these other projects. Examples of tangential projects that produce a potential
dependence include:

• Internet Bank Delivery Channel Project
• Electronic Billpay Project
• Synchronized Billpay
• Corporate Internet connection
• Corporate Email
• Network/Systems/Application Management project

7. It is important to architect and integrate subsystems into the Internet bank
architecture in such a way as to not adversely affect the performance, availability, and
reliability of the banking experience for customers. For example, extreme caution
should be exercised when implementing synchronous communications to external
systems, such as billpay providers, into the application. Besides the problem with
unavailability, slow response times for the bank customer could occur and lead to the
customer not using the bank's Internet delivery channel. An asynchronous
communications model for backend communications has the potential for a better
customer experience.

8. The development model for an Internet bank differs greatly with the standard
waterfall project development model. Specifically, Internet development projects are
typically characterized by the concept of web time and getting new capabilities to
market as quickly as possible:

• Rapid application development and integration
• Phased in functionality and capabilities over time (e.g., evolutionary development)

to decrease time to market

One analogy is with the way that Netscape came to dominate the Internet browser
market by quickly bringing to market browser technology and phasing in very quickly
additional capabilities. Netscape would not have been nearly as successful if it had used
the standard waterfall model.

9. The performance of the overall Internet banking system should be modeled and
simulated to eliminate the bottlenecks as much as possible. Many factors will influence
the overall Internet bank system performance, as perceived by the customer. Some of
these are:

• Internet delay over 28.8 or 14.4 modem.
• Internet Service Provider delays
• Firewall performance
• Application database performance
• Synchronous communications response times
• Other load on application servers
• Customer usage

10. Methodology is crucial to success in Internet banking projects -- especially in the
beginning of these projects -- due to their extremely high visibility inside the bank. An
executive workshop elicted project principles, themes, and requirements from key

executive stakeholders. These project principles that are so unifying and global that
they guided the development of the remainder of the business requirements. Next, all
stakeholders brainstorm on the various business requirements for the project and
consensus is gained on which of these are absolutely essential for the various phases of
the project, and which of these would be added value functionality. These project
principles and functionality requirements are then mapped to the real world by
understanding and taking into consideration the existing technology infrastructure of the
bank. This leads to certain gaps in the planned system which is documented in a gap
analysis, and which needs to be resolved in the final overall system design.

11. When problems cause the project to stall, the project steering committee or project
executive sponsor needs to be informed to act as the intermediary so that the problem
may be quickly resolved, rather than delaying the project deadlines. This is one of the
most important responsibilities of the steering committee and executive sponsor.

12. Distributed CGI processing, that is processing by CGI programs that then make
remote calls (e.g., Berkeley sockets, DCE, transaction process monitor) needs to be well
coordinated. This is due to several factors. First, concurrency could be introduced on a
single CGI and this concurrency of remote processing needs to be synchronized when
the HTML is returned back to the browser. Another reason, is that the user interaction
with the web is inherently asynchronous (e.g., the user can press Stop and Reload at any
time), and these "exceptions" need to get propagated to the remote processes, so that
they may be interrupted and possibly terminated.

13. It is important, at project startup time, to clearly define project team roles and
responsibilities and to secure team member commitments on their contributions to the
project. This is crucial to avoid any ambiguities, overlap, and redundancies.

14. It is beneficial to try to encapsulate legacy data access for optimum reuse of legacy
data access throughout this project and other related projects that use the same data.
For example, when the VBM Internet banking application changes from a batch model
to a real-time access model, if the application is architected such that the data access is
encapsulated with a well-defined bank business API, then much of this can be reused
and will not have to be rewritten.

15. When a bank goes to a third party for application software, -- in this case Internet
banking software -- typically little knowledge or expertise exists within the bank on that
application. As such, when issues do arise, it is hard to determine what is critical, what
is important, and what is less significant. Further, the relationships and dependencies on
the various issues are hard to determine. Finally, little planning can be done to help
resolve or work around these issues, without this knowledge. Therefore, having a
primary systems integrator or applications consultant dedicated to the project is crucial.
The integrator has the application expertise and serves as the single point of contact
between the customer and the application vendor, as well as with any other third parties
and sub-contractors.

References

1. Hirsch, Bernie: Accelerating Virtual Banking by Architecting for Alternate
Delivery Channels, HP internal publication, 1996.

2. Enterprise Solution Model presentation, HP internal publication, 1996.
3. Client/Server Programming, CICS Family: Client/Server Programming,

SC33-1435-02, IBM Programming manual, Third Edition, March 1997.
4. VBM System Integrator's Guide, Security First Technologies, 1996.

