
Using Standard Tools to
 Build an Open, Client/Server Prototype

Bernard S. Hirsch

Hewlett-Packard Company
930 East Campbell Road

Richardson, Texas 75081 USA
(214) 699-4197

bernie@bsh3185.ssr.hp.com

Abstract. This paper will benefit software developers, MIS managers, and
end users because it will help explain some of the practical benefits and
implications of the Open Software Foundation (OSF) Distributed
Computing Environment (DCE) in the context of a prototype application
environment that was developed using the OSF DCE. The environment, a
Financial Desktop, consists of a series of OSF Motif and
MicrosoftWindows based clients which obtain information and resources
transparently from a series of DCE based services, that reside on a range of
heterogeneous computing hardware and software, including multivendor
operating systems, networks, architectures, and databases. This paper will
explain how DCE was used to implement this Financial Desktop in such a
way that installed assets were leveraged, new technologies were
integrated,and the focus of control for this environment has shifted away from
a single hardware or software vendor. The use of the DCE remote procedure
call (RPC) is discussed with respect to the role that it plays in this
environment.

1 Introduction

The seemingly elusive goal, whereby the wealth of information and services in an
enterprise is transparently accessible to end users on demand, is one about which
much is written and discussed. Furthermore, there is an ever accelerating
requirement to accomplish this in an open, distributed computing environment.

The first requirement that the computing environment be distributed is due to
several ongoing trends in which an organization's business units, functions, data,
users, and computing equipment are all now more and more distributed. The second
requirement that the computing environment be open is resulting due to the need for
these enterprises to control their own destiny. That is, they do not want to be reliant
on a single hardware/software vendor when using information technology to help
meet business goals. With the frantic pace at which new technologies, products, and
methodologies are introduced nowadays, an enterprise would like to be in control to

incorporate these to increase its competitive advantage, while still leveraging its
many existing computing investments.

This paper describes how a prototype of an open, distributed application
environment for stock brokers was created in which financial information and
services are transparently accessible across a range of heterogeneous computing
hardware and software, including multivendor operating systems, networks,
architectures, and databases. Further, it is shown how this environment, the
"Financial Desktop" (or FDT), was created using standard, off-the-shelf tools and
technologies including the Open Software Foundation (OSF) Motif graphical user
interface and components of the OSF Distributed Computing Environment (DCE).
Using this open approach it is shown how installed assets are leveraged, new
technologies can be integrated, and how the focus of control for the environment has
shifted away from a single hardware or software vendor.

First the FDT user interfaces and services are described in detail, and the tools and
technologies that were selected to implement the prototype are presented. Next,
implementation details and experiences are discussed, followed by a summary of the
prototype development. Finally, conclusions are drawn on the prototype
environment and related work is introduced.

2 Description of the Prototype Environment

2.1 User View: Graphical User Interfaces

The setting for the prototype is an application environment for a stock broker, that
consists of a series of hardware and software components working together in
unison, so that the stock broker can very efficiently and transparently get his or her
job done, by having presented at their desktop all of the needed information and
services. The software components that come into play in this environment are a
collection of services (or servers) and user interfaces (or clients).

From the stock broker's perspective, four (4) user interfaces "drive" the entire
application (see Figures 1, 2). That is, all interaction with the system is done by
simply entering some information -- such as the customer account number -- and
then pressing a button in the graphical user interface (GUI). All of the information
that the stock broker needs to know about that customer, for example, and the status
of his or her investments are then automatically and transparently presented to the
stock broker in the same unified interface. The four GUIs (e.g., clients) are
described below. [1]

Fig. 1. FDT Client/Server Architecture

Marketminder

Using a "real-time" feed to the Dow Jones, Marketminder simultaneously presents
the NYSE and NASDAQ ticker tape data (e.g., latest stock prices) and allows the
stock broker to query the latest price for a particular stock. Specific information on
each stock presented to the stock broker includes:

a) Stock Name.
b) Current, High, and Low stock prices for the current trading period.
c) Stock price change between the current and the previous trading periods.
d) Volume.

Financial Desktop (FDT)

FDT allows the stock broker to query a customer information database for
individual customer and portfolio data. A heuristic function analyzes various data
and suggests whether the time is right to sell particular customer stocks. Specific
information presented to the stock broker includes:

Client 4

Client 1

Task LogicUI NW

Client 2

Task LogicUI NW

Client 3

Task LogicUI NW

Client n

Task LogicUI NW

Customer
 Portfolio
 Server

Customer
Database

r1

Clients Servers Resources
 Get
Customer
 Stocks

C
om

pute Sell D
ecision

Proprietary
Algorithm
 Server

r2

 Live
Ticker
 Data

Ticker
 Tape
Server

Request Latest Price

Sell/Hold
Decision

r3

a) Customer name, social security number, and address.
b) Stock symbol, number of shares, and purchase price for each customer stock.
c) Current trading price for each customer stock owned.
d) Sell/Hold recommendation for each stock owned.

New Customer

New Customer allows new customer data and customer stock portfolio data to be
added to the customer information database.

Customer Report

Customer Report generates letters to all of the customers of the stock broker that
own a particular stock. The letters advise them of pending recommendations and
actions to sell particular stocks based on some activity. Additional functionality
included in the "Customer Report" client allow the stock broker to either (a) look up
a stock company name based on a Dow Jones stock symbol, or (b) look up Dow
Jones stock symbol based on the company name.

2.2 Resource View: Backend Services

From a functionality perspective, a significant amount of processing is transparently
occurring to be able to present all of this information to the stock broker within each
of these four GUIs (see Figures 1, 2). A description of the various server data
andoperations in this environment will help explain some of this processing. Five
(5) servers provide access to all of the information and services within this prototype
envirnoment. The five servers are described below. [2]

Fig. 2. FDT System Architecture

Customer Information Database service

The customer information database service is implemented as an MPE/iX
TurboImage proprietary network database of customer information that manages the
following data:

a) Customer account number, customer name, social security number, address,
and number of stocks owned.

b) Stock symbol, number of shares, and purchase price for each customer stock
owned.

Its server operations include:

i.) "Get customer data" retrieves all of the data in (a) above, given a customer
 ccount number.

ii.) "Get customer portfolio data" iteratively retrieves all of the stock
information in (b) above for each customer stock held.

iii.) "Add new customer" adds the new customer and customer portfolio data
[specified in (a) and (b) above] to the database.

iv.) Get customer owning stock" iteratively retrieves all of the customers that
own a particular stock, given a specific stock symbol.

Dow Jones ticker tape service

The Dow Jones service provides a real-time feed to the latest NYSE and NASDAQ
stock prices. Either the Telerate or Prodigy dialup services can be used as
underlying services.

rx_datafeed Mktminder FDT

dbreal

Live_Feed
S

to
ck

 S
ym

bo
l

ac
co

un
t #

st
oc

k
sy

m
bo

l/c
om

pa
ny

 n
am

e

ne
w

 c
us

to
m

er
 d

at
a

Customer Report NewCustomer

Latest Stock
Prices

Sell/Hold
Heuristic

Customer
Info DB

Stock Symbol
DB

IngressTurboImage

User Requests

NDBMNDBM

NDBMNDBM

 Latest Stock Price Database service

The latest stock price database service is implemented as a UNIX NDBM database
that maintains the latest stock price for each of the stocks coming across the ticker
tape.

Stock "sell/hold" heuristic analysis service

The "sell/hold" analysis service provides a recommendation to the stock broker as to
whether to sell the customer stock or hold onto it, based on historic and current
market conditions.

Stock Symbol Database service

The stock symbol database service provides a mapping from stock name to stock
symbol, or from stock symbol to stock name, for each of the stocks in the NYSE and
NASDAQ. This database service is implemented as a relational database using
Ingres.

The following server operations are supported:

 i) "Get stock symbol" retrieves the Dow Jones stock symbol, given the
company name.

ii) "Get company name" retrieves the company name, given the Dow Jones
stock symbol.

2.3 Hardware, Operating Systems, and underlying Network

The customer information database service is implemented using an existing
TurboImage network database on a HP 3000 Series 900 business computer running
the MPE/iX operating system.

The Dow Jones ticker tape service, latest stock price database service, and the
"sell/hold" analysis service are all implemented on the following hardware and
operating systems:

a) HP 9000 Series 700 workstations and Series 800 servers running the HP/UX
operating system.

b) IBM RS/6000 Model 320 workstation running the AIX operating system.
c) DEC DecStation 3100 workstation running the OSF/1 operating system.
d) DEC VaxStation 3100 running the VMS operating system.
e) DEC DecStation 5000/200 workstation running the Ultrix operating system.
f) Siemens-Nixdorf workstation running the SINIX operating system.

g) Groupe Bull workstation running the BOS operating system.
h) Stratus fault-tolerant minicomputer running its variant of the UNIX System V

Release 4 operating system.

The stock symbol database service is implemented using the Ingres relational
database on the HP 9000/730 workstation running the HP/UX operating system.

The clients are implemented on the following platforms:

a) HP 9000 Series 700 workstations running the HP/UX operating system.
b) Intel 80386 PC's running Microsoft DOS 5.0 and Windows 3.0.

The clients and servers are networked together using both Ethernet and IEEE 802.5
token ring, using TCP/IP and UDP/IP protocols.

4 Selected Tools and Technologies

The technologies and tools that were selected to be used to implement the Financial
Desktop application environment are briefly discussed.

4.1 User Interfaces

Motif 1.1 using UIMX interface builder

It was decided that OSF Motif 1.1 was the primary GUI technology to be used to
implement the client user interfaces. The familiar and intuitive appearance and
behavior of an interface that complies with the Motif style guide empowers end
users to be productive immediately. Further, UIMX (also called Interface Architect)
from Visual Edge was selected as the interface builder for the Motif GUI, due to its
ease of use, quick prototyping capability, and ability to generate pure Motif C code,
so that portability to future client platforms can occur very easily. In addition, since
very efficient C source code is generated, the prototype interface code can also be
deployed quite appropriately in a production environment. [2]

Microsoft Windows 3.0 SDK

The Microsoft Windows 3.0 SDK was used as a secondary, supplemental GUI
technology to develop MS Windows interfaces for two of the FDT clients that are to
run natively on the PC platforms. Although MS Windows is not standard or open, it
is the most popular GUI in use today on PCs, and thus it is strategic to many users.

4.2 Application Interoperability

DCE Remote Procedure Call (RPC)

It was decided that the OSF DCE RPC would be the enabling technology to be used
to achieve application interoperability between the four FDT clients and the five
FDT servers. The primary decision criteria here was the openness of DCE, as an
enormously popular consortia-sponsored interoperability standard, and as such, the
expectation that it will be increasingly available on almost every computing
platform. For the prototype, early versions of DCE were used for x386
Windows-based PCs, Series 700 HP/UX workstations, and MPE/iX minicomputers,
to achieve interoperability across the various FDT clients and servers.

Other decision criteria also affected the selection of the DCE RPC. First, the
transparency, and scalability afforded the application developer and end users is
much greater for applications architected with DCE RPC than with some of the less
robust, pure messaging technologies. The familiar and intuitive local procedure call
semantics empower software developers to be productive developing distributed
applications with minimal training. Second, DCE RPC greatly simplifies the
development of the clients and servers by automatically generating client and server
stub (or "glue") C code. Most distributed computing complexities are taken care of
automatically by the DCE RPC tools, generated stub code, and the DCE RPC
library. Finally, DCE RPC can just as easily be used to implement a production
worthy implementation as it can to achieve the prototype described in this paper,
since this third generation technology was designed with these goals in mind. [3, 4]

5 Implementation Details and Experiences

5.1 Background

The FDT prototype was originally developed in early 1991 at HP Dallas using
Network Computing System (NCS) 1.5.1 RPC and directory services on HP
Domain/OS, HP/UX, and MPE/XL operating systems. NCS 1.5.1 supports a
non-threaded distributed computing environment with a non-hierarchical name
space with no additional security. [5] This technology was used because DCE,
even in snapshot form, was not yet available from OSF. In addition, the UIMX
Motif prototyper tool was used to generate the client user interfaces. Since one of
the purposes of the prototype was to demonstrate heterogeneous distributed
application interoperability and data access, some rudimentary visual feedback was
added such that the screens of the various RPC servers "light up" green whenever
an RPC request is serviced.

DCE Implementation

In July of 1991, OSF decided to use this prototype environment as the basis for its
DCE demonstration to the support the September 17, 1991 worldwide availability
announcement of DCE. As such, the FDT client and server code was reengineered
o use DCE RPC and DCE threads, so that any DCE licensee can utilize the
prototype environment for demonstration purposes, by building it with their
DCE implementation. At the time of the implementation, the latest version of the
DCE code was Snapshot 5, and the CDS security services were not yet mature
enough to be used. The FDT code was ported to OSF/1 on the DECstation 3000
workstation and the HP PA-RISC 720 workstation, as the two primary development
environments.

5.2 Utilization of DCE Core Components

RPC and Threads

The DCE remote procedure call was heavily utilized throughout the FDT
environment to accomplish both distributed data access and distributed
computation. Idempotent call semantics were used throughout, since read only
access was he only requirement for the initial implementation. The new DCE
 RPC context handle feature was also utilized in the data access interfaces so
that servers can maintain client state and clean up if necessary. The endpoint
mapper daemon (rpcd) was not utilized since well-defined endpoints were used in
the Interface Definition Language (IDL) files. This is poor implementation
practice, in general, but was used here due to the infancy of the DCE software.
Finally, the broadcast attribute was specified for the send_tick() procedure of the
Dow Jones Ticker Tape Service, so that multiple MarketMinder clients/servers
are instantly informed of new ticker tape activity.

Threads were not used explicitly in any client implementation except for a
workaround that was required for some initializations that were not occurring in
early DCE code. Threads were used implicitly by every FDT application server so
that multiple clients are serviced simultaneously. It was for this same reason that
context handles were also required. The manner with which multi-threaded
servers are created in DCE is very straightforward and thread complexities are
transparent to the developer.

Cell Directory Service Emulation

Part of the source code port from NCS to DCE included porting NCS location
broker (lb_$) calls to the DCE NSI calls to register services into and lookup
services from the Cell Directory Service (CDS). The original goal was to utilize
the new automatic binding feature in DCE, whereby with no explicit

programming on the part of the application developer, clients will automatically
and seamlessly connect with their appropriate servers, and if those servers
should fail, the clients will then automatically reconnect with other equivalent
servers.

However, since the CDS portions of DCE were not ready at that time, a C library
was created which emulated CDS (actually, RPC NSI) functionality and behavior.
Conditional compilation allowed use of either the native DCE CDS or the emulation
library, while providing transparency to the application. In addition to emulating
the automatic binding and rebinding on server failure, the library randomly picks a
server to which the client will connect, if there are multiple equivalent servers
available. This will, in effect, amortize the various RPC calls -- and thus the RPC
load -- across the various RPC servers, creating a simple form of RPC
load-balancing.

The additional step of emulating CDS required the static definition of server
locations (e.g., hostnames) for each interface definition in a configuration file.
This is sufficient for a small, static prototype environment, but this methodology
will not scale up to a larger, more dynamic, and more realistic environment.

What worked well here, in addition to the transparency to the application
source code, is that clients compiled with the emulation library will interoperate
with both servers compiled with the emulation library as well as with servers
compiled with the true RPC NSI interface -- in effect, creating two namespaces.
The converse is not true, however.

5.3 Demonstrating DCE Interoperability

Demonstrating distributed application interoperability and data access is not an
intuitive concept. If application components are interoperating correctly, user
requests are processed and results are presented. However, it is not obvious where
events and actions are happening. As such, a not insignificant amount of effort
went into providing visual feedback as part of the FDT environment, such that one
is able to discern where distributed computing is occurring.

Specifically, the lighting up of screens was expanded to display specific
vendor logos on both client and server machines. To accomplish this, an
additional RPC parameter was added to each function signature in the FDT IDL
files to denote either from which machine an RPC is being called or where it is
being serviced:

 [idempotent] void db_stocks_open([in] handle_t h,
 [in,out] long *vendor_id,
 [out] file_handle_t *fh);

The background of the server machine's screen, for example, will display a
bitmap of the client's vendor logo (i.e., the HP or IBM logo) when the RPC is
serviced. And the client GUI will display a bitmap of the server's vendor logo
when the RPC completes. In this way, it is easy to determine between which
machines an RPC is being rocessed. The user can then press a toggle button which
alternates between visual feedback mode and "live" mode, in which RPCs can
complete at full speed with no visual feedback.

5.4 Replicated Application Servers

FDT application servers were replicated to demonstrate the concepts of utilizing
DCE for high availability, load balancing, and multiple custom server
implementations in a distributed computing environment. High availability is
demonstrated by unplugging the network connection from an FDT server during a
series of RPC calls. Then, when the ensuing RPC is requested on that now
unavailable server, the client delays slightly and then rebinds to another equivalent
server, with its new server vendor logo displayed in the client GUI. In the FDT
clients, the default RPC timeout was changed from about thirty-two (32) seconds
to either four (4) or eight (8) seconds. Depending on which application server to
which a client connects, a different server implementation is executed. For
example, on a customer database lookup, either a Unix flat file is sequentially
searched or an HP MPE TurboImage network database is searched.

In the prototype environment, the general replication problem is scaled down and
some assumptions are made so that only application servers with no update
interface can be replicated. If no assumptions are made -- which in a real
application environment cannot be done -- either a replicated database or a
distributed transaction processing (TP) monitor would be required for an
application server managing a database. Since the former solution requires a
monolithic, single database vendor implementation, the latter TP monitor
solution would have been preferred, and the Transarc Encina technology would
have been selected since it is already integrated with OSF DCE. In this scenario, an
update is no longer a non-idempotent (i.e., at most once) operation, but instead is
transactional (i.e., exactly once), in which each replicated database is updated
with the scope of that single transaction. In effect, the Encina TP monitor
solution is used to keep heterogeneous databases in synchronization by utilizing a
two-phase commit across the various databases. [6]

5.5 Developers' Skills and Roles

Three developers were intially involved in the building of the FDT prototype.
Each had different backgrounds and skillsets that were effectively utilized in
creating different portions of the FDT clients and servers. It was found that a high
degree of concurrent development was achieved in large part due to the inherent
requirement to first define the client/server interfaces in the DCE IDL files. This is

somewhat akin to defining an object in object-oriented analysis and design
methodologies. DCE encourages the view of resources and their services as objects
and methods, and the requirement that this definition be done first allows the DCE
client and server developers to proceed independently once an IDL file is agreed
upon.

The developer with legacy database management skills proceeded to create the
customer database schema, load the database, and develop the interface routines
(e.g., methods) that comply with the service's IDL file. In effect, this developer was
encapsulating the legacy database with a layer of openness that any client developer
could then access once given the IDL file -- and could access it without knowing its
underlying implementation or even being knowledgeable about that implementation.
A customer database object has now been created.

The developer with a background in GUI design was given the liberty to create a
GUI that the user would be comfortable with, and as such dealt primarily with
ergonomic and style-related issues. The third developer, in effect, acted as an
integrator between the user interface object and the customer database object. This
developers' role was to translate user interface messages (e.g., callbacks) into
customer database messages (e.g., business transactions) and to create the necessary
application logic to have the DCE client perform as desired.

These three roles are prevalent throughout the FDT clients and servers. When an
object and its method already exists, it can simply be reused. This is the case, for
example, in the Latest Stock Price Database with the request_price() method used
by both the Marketminder client and again later by the FDT client. This reusability
of server operations is one of the primary benefits achieved through thoughtful and
generalized IDL design.

6 Summary of Prototype Development

Before the summary of the steps involved in developing the FDT prototype
application environment is presented, it should be emphasized again that the
selected tools and technologies promote parallel development of the application.
The benefit of this approach is not only that the prototype will be produced more
rapidly since it is produced in parallel, but also that the learning curve is minimized
since current skillsets can be partitioned into these three pieces. That is, user
interface experts can concentrate exclusively on building GUIs, and specific
technology experts can deal solely with providing access to an underlying
technology/service by developing the server and server operations. An expert on the
TurboImage database can provide access to TurboImage data by implementing the
previously agreed upon server operations, and a client developer can then access
TurboImage data without having to know anything about the TurboImage database,
by simply invoking the appropriate server operation.

The primary steps, then, that were followed to create the FDT prototype are outlined
below:

1. Client/Server Interface Definition: For each service, the client and server
software developers need to agree upon the client/server interface definition
and its supported server operations. These server operations include the
operation name, input and output parameters required by the operation, and
possibly some additional, optional attributes. This information is specified in
a DCE IDL file. These server interfaces and server operations were
discussed above in "2 Description of the Prototype Environment". One of
the server operations for the customer information database service is
specified as:

 [idempotent] void get_customer_data([in] handle_t h,
 [in] char acctNum[4],

 [out] customer_t *custData,
 [out] long *numStocks,
 [out] long *status);

2. Interface Compilation: For each interface, the DCE IDL compiler is
executed taking the DCE IDL file as input and producing as output the
respective client and server side stub code.

3. At this point, the client and server software developers can start their parallel
developments, since their interface has now been formally defined.

3a. Server Implementation: The server software developer will develop the
implementation for the server operations agreed to in Step 1, above. In
the implementation of each server operation, the server developer needs
to manipulate the underlying resource as specified by the operation.
This entails using TurboImage system calls, for example, in the
customer information database server, to query or update this database.
In the stock symbol service, the server developer needs to issue
imbedded SQL statements to retrieve the requested stock symbol or
company name.

3b. Client Implementation: Development of the client application can also
be done in parallel here, by first specifying the formal interfaces
between the GUI and the application logic. What needs to be agreed to
and specified up front are (1) the callback function names and
parameters, so that the appropriate function can be called when the user
presses a button, and (2) the names and types of the GUI
objects/widgets so that the client software developer can read from and
write back to the appropriate user interface elements.

3b-i. GUI Development: The user interface developer will create the
appearance and behavior of the GUI and will link the user
requests for action (e.g., button presses) with client application
"callback" functions. The information presented in the user
interfaces was discussed above in "2 Description of the
Prototype Environment". UIMX was used here to create the
Motif GUIs, and the Microsoft SDK was used to create the MS
Windows GUIs.

3b-ii. Client Application Logic: The client software developer will
develop the necessary "callback" functions and client application
logic, and will call the server interface operations as needed.
Also, the client software developer needs to read from and write
to the appropriate graphical user interface elements. Some
pseudo-code for the FDT client shows a sample of the flow of
processing that occurs when the stock broker enters a customer
account number and presses the "OK" button:

void ok_callback();
{
...
/*
 * First read the customer account number from the GUI.
 */
acctNum = XmTextGetString(textWidget);
...
/*
 * Next invoke the customer data "query" operation.
 * Note: This is an RPC call.
 */
get_customer_data(bindingHandle, acctNum, &custData,
 &numStocks, &status);
...
/*
 * Then, put the customer data just obtained to the screen.
 */
XtSetValues(firstNameLabel, data1, count1);
XtSetValues(lastNameLabel, data2, count2)
XtSetValues(ssnLabel, data3, count3);
XtSetValues(addrLabel, data4, count4);
...
}

7 Conclusions

A prototype client/server financial application for stock brokers was developed
using standard, off-the-shelf technologies and tools -- OSF Motif and OSF DCE.
The technologies and tools that were used to develop the application were selected
primarily due to their openness, standards compliance, and their capability to also
be deployed in a production environment. By prioriting openness as the highest
decision criteria, it is shown how installed assets can be leveraged, new technologies
can be integrated, and how the focus of control for the environment can be shifted
away from the vendor and back to the customer, where it belongs. By using
standard compliant APIs that are portable to many different systems (PCs, MPE/iX,
and Unix), by using standard compliant protocols that are interoperable with other
vendors' tools, technologies, and implementations, by using tools and technologies
that are widely available by tens and hundreds of vendors, and by using tools and
technologies that scale well from a prototype application to a fully deployed
application, an enterprise can start to regain control of its computing destiny.

Specifically, it is seen that by using these open technologies, the investment in
installed assets, such as the TurboImage database, can be protected, and in fact
enhanced, by opening up access to the data to the entire enterprise. In this fashion,
where the enterprise's business units can use this technology to methodically open
up the access to their business data and services to anyone who needs to use them,
business processes can start to be better optimized and reshaped.

It is also seen how new technologies, such as the Ingres relational database (and in
the future, object-oriented databases and audio and video), can then also be easily
added to the environment for the additional benefits of those latest technologies.

Finally, the client/server development process has demonstrated to lend itself very
nicely to rapid and effective systems development, in part by allowing the capability
for parallel software development, in part because the development tools (the DCE
IDL compiler and the UIMX interface builder) automatically generate much of the
source code, and in part because if the services are developed in a generalized
manner, they can be reused many times over by many new clients.

8 Related Work

The FDT prototype is currently being used as an educational tool to help
demonstrate some of the features and benefits of OSF DCE. An HP customer
education course entitled "Hands-On With Open, Client/Server Technologies"
(HOW) has been developed to give information technology professionals a hands-on
exposure on what is involved in developing a client/server solution using true,
standards-based tools and technologies, such as OSF Motif and OSF DCE. The

class is four (4) days long -- half lecture and half lab -- and utilizes the FDT
prototype for the lab exercises. Two new clients and one new server have been
added to the FDT environment in the development of this class to allow students to
be added as customers, to allow customer reports to be generated, and to allow a
two-way mapping between stock symbol and company name. [7]

Several other enhancements to the FDT prototype are currently planned or are
already completed. The first enhancement is introduced in "5.4 Replicated Servers"
in which the Transarc Encina TP monitor will be used to keep the replicated FDT
application servers in synch with each other by the XA-compliant two-phase
commit protocol. If it is determined that this significantly degrades interactive
performance, then the Encina RQS technology will also be used to batch
transactions into persistent queues for later processing. [6]

Another enhancement request is for better use of the DCE core components
including rpcd, cdsd, and secd (for authentication, integrity, and privacy). Better
illustration of the distributed computing is also planned, in particular with the use of
multimedia features such as audio on the clients and servers. Additional
functionality such as the ability to track and analyze specific stocks or customer
portfolios over a period of time is planned with the purpose of better illustrating the
benefits of reusability of DCE server interfaces.

References

1. Hirsch, B.: Building an Open, Client/Server Application, Interact, Volume
12, Issue 10, 100-115 (October 1992)

2. HP Interface Architect 2.0 Developer's Guide, Hewlett-Packard Company
(1993)

3. OSF DCE Application Development Guide, Volumes I and II, Open
Software Foundation (1993)

4. OSF DCE Application Development Reference, Open Software Foundation
(1993)

5. Lyons, T.: Network Computing System Tutorial, Prentice-Hall (1991)
6. Spector, A.Z.: Preparing for Distributed Computing and Open OLTP,

Transarc Corporation (1992)
7. Hands-On with Open Client/Server Technologies, HP Computer/Instrument

Systems Training Course (1992)

